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Abstract – Joint data management (JDM) includes the 
hardware (e.g. sensors/targets), software (e.g. 
processing/algorithms), and operations (environments) of 
data exchange that enables persistent surveillance in the 
context of a data-to-decision (D2D) information fusion 
enterprise.  Key attributes of a information system require 
pragmatic assessment of data and information 
management, distributed communications, knowledge 
representation as well as  sensor mix, algorithm choice, 
life-cycle data management, and human-systems 
interaction. Throughout the paper, we seek to describe the 
current technology, research approaches, and metrics that 
instantiate a realizable joint data management product. 
We develop the methods for joint data management for 
structured and unstructured data in the context of decision 
making. The accurate track and identification of the target 
provides a MOVINT capability. We examine classification 
methods of unstructured data using seismic, acoustic, and 
combined fusion methods for data analysis. 
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1 Introduction 
The goal of Joint Data Management1 for MOVINT 
(intelligence about moving object) is to design a tool that 
supports sensor placement, optimal data collection, and 
active sensor management for decision support, in an 
environment where data exchange is seamless, efficient, 
and appropriate across potentially diverse stakeholders.  
With limited sensor resources, there is a need to optimize 
sensor placement that maximizes the sensor utility for 
users to observe moving targets[1]. The utility is based on 
the measures of effectiveness, which can vary over the 
sensor types, environmental conditions, targets of interest, 
situational context, and users [2].  
 One example of MOVINT is detecting cars moving in 
an urban area [3]. Detecting traffic can be completed by 
fixed ground cameras or on dynamic UAVS.  If the 
sensors are on UAVS, path planning is needed to route the 
UAVs to observe the traffic [4, 5] and cooperation among 
UAVs is necessary[6]. The DARPA Grand Challenge 
                                                             
1 In the context of this paper and research Joint Data Managementdoes 
not refer to Joint Services  (cross service phenomena).  The use of 
“Joint” in this research refers to cross-data analysis. 

featured sensors on mobile unattended ground vehicles 
(UGVs) observing the environment [7]. Mobile sensing 
can be used to orient [8] or conduct simultaneous location 
and mapping (SLAM) [9] to observe the environment or 
another targets [10]. Current efforts include Mobile-Ad 
Hoc Networks (MANET) and cooperative robots from 
which many efforts are applied such as information-
theoretic entropy approaches [11]. 

A significant challenge in detecting and tracking moving 
vehicles in an urban area over a long period of time is to 
acquire data in a persistent, pervasive, and an occlusion 
compensating manner [12]. There has been a recent surge 
in the design and deployment of wide field-of-view 
systems known as WAMI (wide area motion imagery) 
sensors, including the DARPA ARGUS-IS. At any given 
instance, they produce images with dramatically varying 
point spread functions across a very large field of view; 
and, any given location  undergoes persistent observation 
of varying spatial fidelity from different viewing 
directions as the sensor moves steadily in a fixed pattern 
above the city [12, 13]. A substantial amount of 
preprocessing, coupled with frame-to-frame, or frame-to-
DTED (digital terrain elevation data) registration is 
applied before an image sequence can be analyzed in the 
context of multi-target tracking, or historical baseline 
similar to UAV video analysis or object deformation 
measurement tasks [14, 15]. Detection, feature extraction, 
post-processing, object detection, tracking, and track-
stitching of moving vehicles in these videos is still a 
complex problem in terms of, fusion, computation and 
throughput [14, 16]. Motion detection-based track 
initialization for vehicle and people tracking using the flux 
tensor, aligned motion history images, and related 
approaches have been shown to be versatile approaches 
[13, 17, 18, 19]. Scaling these algorithms to very large 
WAMI sequences will require improved computer vision 
algorithms and multicore parallelization [16, 20]. Joint 
data management, summarization and retrieval using 
content-based querying and searching of visual 
information with user feedback remains a significantly 
challenging area [21, 22] 

Deployed ground sensors can observe the targets; 
however they are subject to the quality of the sensor 
measurements as a well as obscurations.  One interesting 
question is how to deploy the fixed sensors that optimize 
the performance of a system. Efforts in distributed 



wireless networks (WSNs) [23] have resulted in many 
issues in distributed processing, communications, and data 
fusion [24]. To facilitate both WSNs decision support, 
requires efforts in understanding the user’s needs [25], the 
theoretical and knowledge models [26], and situational 
awareness processing techniques [27]. In a dynamic 
scenario, resource coordination [28] is needed for both 
context assessment, but also the ability to be aware of 
impending situational threats [29, 30]. For distributed 
sensing systems, to combine sensors, data, and user 
analysis requires pragmatic approaches to metrics [31, 32, 
33, 34].  For example, Zahedi [35] develops a QOI 
architecture for comparison of centralized versus 
distributed sensor network deployment planning. 

Information fusion has been interested in the problems 
of databases for target trafficability (i.e. terrain 
information) [36], sensor management [37], and 
processing algorithms [38] from which to assess objects in 
the environment. Various techniques have incorporated 
grouping object movements [39], road information [40, 
41], updating the object states based on environmental 
constraints [42]. Detecting, classifying, identifying and 
tracking objects [43] has been important for a variety of 
sensors, including 2D visual, radar [44], and hyperspectral 
[45] data; however newer methods are of interest to 
ground sensors with 1D signals. 

The DARPA SENSIT program investigated deploying a 
distributed set of wireless sensors along a road to classify 
vehicles as shown in Figure 1. 

 
Figure 1.  SENSIT Data from [M. F. Duarte and Y. H. Hu, 
“Vehicle Classification in Distributed Sensor Networks,” 2004 [46] 

 
The sensors included acoustic and seismic signals. 

While the placement of the sensors was not determined a 
prior, the observations were not subject to obscurations.  
Given the deployed set of sensors, feature vectors were 
used to classify signals based on the data from the seismic 
and acoustic signals. [46] Various approaches include 
combining the data with decision fusion [47], value fusion 
[48], and simultaneous track and identification methods 
[49]. Information theoretical approaches including the KL 
method were applied to the data for sensor management 
[50] as shown in Figure 2. 

Much work has been completed using imaging sensors 
and radar sensors for observing and tracking targets. Video 
sensors are limited in power and subject to day/night 
conditions. Likewise, radar line-of site precludes them 
from observing in the same plane.  Together, both imaging 

and radar sensors do not have the advantage of UGSs 
which can power on and off, can work for a long time on 
battery power, and can be deployed to remote areas. 

 
Figure 2. Deployed Sensors. From S. Kadambe and C.     
    Daniell, “Theoretic Based Performance of Distributed Sensor            
    Networks”, AFRL-IF-RS-TR-2003, 231, October 2003. [65] 

 
Track management situational awareness tools receive 

input from sensor feeds (examples include electro-optical, 
radar, electronic support measures (ESMs), and sonar) and 
display this information to a user. User inputs include: 
creation of new objects, such as tracks, contacts and 
targets. Methods to reduce data-to-decisions include: 
fusing multiple tracks into a single track, incorporating 
alerting mechanisms, or visualizing track data common 
operational picture (COP). Sensor and track data can grow 
rapidly as the user desires to keep historical data. 
Wikipedia states that the use of relational database 
management systems (RDBMS) [51] provides support for 
track management; however, RDBMS requires a high 
level of maintenance, provides limited support for ad-hoc 
querying, involves rigid storage paradigms, and has 
scalability issues. 
 Our goal is to determine the possible JDM for D2D from 
the unstructured data to the classification decision over 
varying environmental conditions. JDM includes (1) 
sensor management and placement of these UGSs, (2) 
intelligent use of the data based on value for classification, 
(3) coordination of sensor data for detection, classification, 
or both, and (4) metrics to support the sensor and data 
management as supporting a user control. Together, these 
factors have to be addressed in decision support tools that 
aid an operational team that deploys, maintains, repairs, 
and then utilizes the data over a distributed network. 
 
2 Location / Detection 
We desire to produce a JDM system for D2D with a 
MOVINT capability, which introduces the question what 
characteristics are relevant for such a system. MOVINT is 
an intelligence gathering method by which images 
(IMINT), non-imaging products (MASINT), and signals 
(SIGINT) produce a movement history of objects of 
interest.  MOVINT provides both tactical and operational 
intelligence (situational awareness) of the dynamic 
environment. 



2.1 Sensor Information Management 
The goal is to utilize the UGSs sensors which may be 
acoustic, magnetic, seismic, and PIRoelectric (passive 
infrared for motion detection.  With a variety of sensors, 
information fusion of JDM for D2D can (a) utilize the 
most appropriate sensor at the correct time, (b) combine 
information from both sensors on a single platform, (c) 
combine results from multiple platforms, and (d) cue other 
sensors in a hand-off fashion to effectively monitor the 
area.  Sensor exploitation requires an analysis of feature 
generation, extraction, and selection or (construction, 
transformation, selection, and evaluation). To provide 
track and ID results, we develop a MOVINT capability of 
the target location and identification. 

2.2 Sensor Classification  
Sensor exploitation includes detection, recognition, 
classification, identification and characterization of some 
object.  Individual classifiers can be deployed at each level 
to robustly determine the object information.  Popular 
methods include voting, neural networks, fuzzy logic, 
neuro-dynamic programming, support vector machines, 
Bayesian and Dempster-Shafer methods. One way to 
ensure the accurate assessment is to look at a combination 
of classifiers.  Combination of classifiers [52] could 
include different sensors with classifiers, different 
methods over a single or multiple sensors, and various 
hierarchies of coordinating the classifiers such as Bayes 
nets and distributed processing. 

Issues in classifier combination methods need to be 
compared as related to decisions, feature sets, and user 
involvement.  Selecting the optimal feature set is based on 
the situation and environmental context of which the 
sensors are deployed.  An important question for sensor 
and data management is measures of effectiveness. For 
instance, what is the quantification of fusion/decision gain 
using a set of classification methods and placement 
methods?  There is a need for a robust combination rule 
that includes the location and detection of the sensors 
subject to the target and environmental constraints. 
Typically, a mobile sensor needs to optimize its route and 
can be subject to interactive effects of pursuers and 
evaders with other targets [53] as well as active jamming 
of the signal [54].   

Detecting targets from seismic and acoustic data in a 
distributed net centric fashion requires pragmatic 
approaches to sensor and data management. [55] To 
robustly track and ID a target requires both the structured 
data from the kinematic movements as well as the 
unstructured data for the feature analysis. [56] 
 
3 Unstructured Data 
Because effective MOVINT must incorporate diverse data 
structures it is important that a JDM system address 
concerns of unstructured data in addition to structured 
data.  Unstructured data (versus) structured data refers to 
computerized information that does not have a data 

structure (i.e. exist within a database). Examples of 
“unstructured data” may include (1) textual: documents, 
presentations, spreadsheets, scanned images, etc., (2) 
imagery: multimedia files, streaming video, etc., (3) 
HUMINT: reports, audio files, gestures, (4) sensors: 
seismic, acoustic, magnetic, sonar, etc., and (5) 
environmental: weather, GIS, etc. All of the data has to be 
collected, acquired, exploited, stored, recalled, and tagged, 
not to mention a host of other activities. Most of data that 
is collected has some structure; however, for information 
fusion the inherent structure is not common among 
entities. 
 

 
Figure 3. Description of Unstructured Data. 

 
Research has shown that over 95% of the digital universe 
is unstructured data. According to these studies, 80% of all 
stored organizational data is unstructured (Gantzandetal 
2007; White 2005) [57, 58].  This presents a critical 
challenge for large data technologies specifically in the 
area of data exchange because unstructured data must be 
structured before knowledge can be extracted and must 
therefore undergo some sort of transformation.  The 
impact of this transformation affects the manner in which 
the data is stored, accessed, and utilized.  The effects of 
this transformation are visible in the metadata, where the 
information contained in the data itself is described; 
illustrating the implications of data exchange on data 
integration.  The relationship between data exchange and 
data integration is not trivial and from a decision-making 
perspective must be tightly linked together because the 
data is exchanged for a purpose, likely with other data.  
When characterized in this manner, the performance of 
data exchange has an implicit dependency on integration 
and therefore schema synthesis. 
 Managing data requires dealing with the structured and 
unstructured data with methods to allow the user and the 
algorithm to understand the credibility and complexity of 
the data. 

3.1 Unstructured Information Challenge 
Exclusive of the unstructured or structured nature of data, 
the premise of data exchange suggests a need for a 
unifying, ideally universal, data schema.  The likelihood of 
achieving such a unified schema in the near term, 
particularly in an environment as dynamic and diverse as 
the Department of Defense is unlikely.  However that does 
not preclude the research merit in attempting to achieve 



such an objective; rather it underscores the importance of 
doing so. 
 The unified data integration model for situation 
management developed by Yoakum-Stover and Malyuta 
[59] presents a database-centric theoretical solution for 
unified storage of structured data that is viable in ultra-
large scale systems environments.  This solution is based 
on their Data Definition Framework (DDF).  The DDF 
consists of 6 primitives (signs, mentions, terms concepts, 
statements and predicates) that describe the fundamental 
elements of data generically.  The research proposes that 
these primitives can be utilized as a lossless foundational 
structure with which to decouple vocabularies/data models 
from the source data artifacts. 
 While the objective of a lossless unifying data model 
that allows integration of disparate data sources and model 
semantics is laudable as well as desirable, many practical 
considerations that have historically characterized data 
integration and fusion, present challenges to any solution’s 
viability. Exclusive any sociological, behavioral, or 
organizational obstacles to unified information spaces, 
which are not the focus of the research; the authors’ 
solution takes a step in the direction of addressing the 
practical technical issues.  Despite the innovations present 
in the DDF, it suffers from some limitations that are 
particularly critical to a unified model.  Most significantly, 
the linkages between the data and the model prevent the 
DDF from capturing concepts for which no data exists, 
which is essential for any unifying schema.  To this extent 
the DDF would be effectively useless in cases where 
sparsity was high or in cold start situations such as those 
that would existing in ranking or recommendation decision 
support systems [60]. Further, the DDF also lacks the 
notion of element ordering or implementation to capture 
constraints, participation, and cardinality.  To effectively 
utilize such an approach it is essential to extend the work 
of Yoakum et al. to address these issues. 
 The DDF is only one notion of a unifying schema 
approach and there are others, including the Extended 
Entity Relationship data model (EER) (Markowitz and 
Shoshani 1992), [61] the Amsterdam Hypermedia Model 
(Hardman et al. 1994), [62] the object-oriented predicate 
calculus (Bertino et al., 1992), [63] UCLA M Model 
(Dioniso and Cardenas 1998) [64] and the iMeMex Data 
Model.   While having individual benefits over one 
another these models generally tend to focus on logical 
schema definition.  The Amsterdam Hypermedia Model 
and the UCLA M Model target multimedia, timeline, and 
simulation data and as such lack broad generalizability to 
other datatypes.   EER has grown in popularity and has 
become the basis for contemporary relational database 
modeling due to its visual effectiveness, but lacks the rich 
semantics of object oriented or other modeling constructs 
and is bound by the limitations in scaling of entity-
relational structures. 
 
 
 

3.2 InfoGrid NoSQL and Probe Framework: Data 
Exchange in a Non-Relational Schema 

Given a generalized information model, there must exist 
and architecture that can support information management 
in that context.  InfoGrid [65] is an open-source software 
modular architecture that is comprised of a graph database 
that abstracts data stores’ interface to web applications.  
Figure 4 illustrates the high level architecture of InfoGrid. 
The design objectives of InfoGrid were to support a broad 
set of information types, connect information from 
different sources with an integrated application 
programmers’ interface that is schema-driven and support 
a broad range of applications.  Within the InfoGrid 
structure, information is modeled as a semantic network.  
The design of InfoGrid resolves the join-scalability of 
relational databases and separates the tight integration 
between the data and the application.    

 
Figure 4. InfoGrid Application Architecture [65]. 

 
InfoGrid specifically targets web applications.   The Probe 
Framework, which is built on the InfoGrid platform, 
makes the content of external data stores and sources 
appear as InfoGrid objects that self-update.  The Probe 
Framework does this by shadowing the content of external 
sources as they change through the implementation of 
probes that monitor and control updating effectively 
creating decentralized data sources with federated 
governance within the scope of the InfoGrid infrastructure.  
From this perspective probes operate like services that 
extend the external data source into the InfoGrid platform 
on which applications are layered.    
 This architecture has many benefits for data exchange in 
a large data context.   It subsumes the challenges of 
unified schemas by providing both a middleware pass 
through (using the Probe Framework) as well as a 
centralized graph database (the MeshBase referred to in 
Figure 4]) on which applications are built.  The broad 
range of data stores addresses the diverse nature of data 
structure and incorporates utilities within the framework 
for specialized processing tasks.  By adopting this 
architecture InfoGrid allows scalable applications to be 
created and maintained more quickly, more reliably and at 



lower cost by addressing the concerns of data exchange.  
Moreover, this generalized architecture can increase the 
availability of decision-related resources and therefore 
increase the probability of successful decision outcomes 
[66]. 

3.3 Data Management Processing 
Data exchange can result from delivering the raw data 
versus publishing summaries of the data. Delivering the 
raw data requires an architecture that can support large 
volumes of data.  Another method is to design an 
architecture such that the processing is embedded in the 
sensor such that data delivery is faster, there is increased 
speed from data to decisions, and a quicker ability to cue 
other sensors for on-line processing. Distance and data 
amount are tradeoffs that must be accommodated for 
processing speed of D2D. Processing the data at the sensor 
would require communication challenges between 
distributed sensors. For both cases, the architecture must 
address large amounts of data exchange and the speed of 
the communication for data exchange. 
 There are many techniques for processing unstructured 
data given known situations or a priori hypothetical 
situations.  Since the data is unstructured it is essential to 
provide some context around which exploitation can be 
built approaches, which includes: data transformation, 
analysis, and sampling, feature generation, association, 
selection and extraction; decision classification such as  
Bayesian, Dempster-Shafer, and Support Vector Machines 
(SVM) methods for clustering and association rule 
extractions. Using the above methods, either known 
models or learned unknown models can help assess the 
data.  In this context, since the complexity of the situation 
is known models are constructed using regression analysis 
over the parameters of interest and machine learning 
approaches can determine the likely components of the 
model. 
 Data mining supports the processing of data, however, 
ontologies (or semantic models) can improve the 
categorization, storage, and indexing of the data. An 
ontology improves communication between humans and 
machines, because an ontology contains machine-
processable, structures to disambiguate given data values, 
as well as data structures.  
3.4 Published/Filtered Data 
Processing of large volumes of data requires metrics, 
architectural models, and operational realistic scenarios to 
test data search, access, and dissemination. Properly 
measuring significant parameters is critical to quantifying 
compliance and outcomes; yet doing so presents a 
challenge for eliciting quantifiable data, particularly in the 
case of architectural or system-related measures.  
Assessment of large data architectures requires a set of 
metrics that will objectively quantify performance of the 
architecture, its related technologies, and process/decision 
impacting outcomes.  Relative to the JDM emphasis on 
large data, it is important to revisit a working definition of 

large data.  Large data is when data has sufficient volume 
such that it cannot be completely processed for real-time 
decision making.  Extending this definition to architectural 
metrics, additional focus should be given to scope 
measurements that determine the tradeoffs between cost, 
timeliness, throughput, accuracy, and confidence.  The 
performance of a large data architecture (LDA), like any 
complex system is affected by its objectivity, context, and 
resolution of measurement.  As a system increases in size, 
complexity/flexibility/scalability, and number of human 
participants becomes increasingly difficult to identify all 
of the relevant system elements, to measure the desired 
properties of the elements, or even quantify what should 
be measured. Large systems are resistant to holistic 
system-level measurements.  
 There are two general perspectives on architectural 
metrics: measurement of the descriptive architecture itself 
and the measurement of the architectural artifacts.  There 
is ample work detailing the measurement of artifacts, but 
the work measuring architectural quality is somewhat 
sparse. Yet there are advantages to descriptive architecture 
evaluations.  These benefits include financial benefits, 
increased understanding and documentation of the artifact,  
detection of problems with the existing architecture, and 
clarification and prioritization of requirements [67] 
Evaluating a descriptive architecture has an additional 
benefit in that it can provide the foundation for system 
performance assessment before the system is developed.   

3.5 Data Management Metrics 
Data exchange is an important area of information 
management that aims at understanding and developing 
foundations, methods, and algorithms for transferring data 
between differently structured information spaces to be 
used for diverse purposes.  The exchange of data is but 
one critical step in information management.  However the 
exchange of data is a linchpin for the success of any data 
management strategy or infrastructure.  Efficient and 
effective exchange of data must address many issues 
beyond just getting the data to where it is needed 
(transport).  Issues of dissemination (access, availability, 
control), quality (truth, relevance, accuracy), timeliness 
(speed-to-need and information lifecycle) are an exemplar 
list of challenges that fall under the data exchange scope 
of activity.  Similarly many of these metrics translate 
directly to decision outcomes (timeliness, user confidence, 
accuracy). From a large data perspective, the process of 
data exchange is complicated by limitations in 
interoperability, diversity in applications and contexts, and 
even by the structure of the data itself.  
 
 A summary [68] of ten key requirements include: 
 

• Visibility: Illustration such as folders and plots 
• Control: Test, push, and pull of information 
• Auditing: Complete and searchable 
• Security: Data permissions and access 
• Performance: communication and traffic flow 
• Scale: amount of data 



• Ease of Installation: timeliness of submission  
• Ease of Use: distributed and timely access 
• Ease of Integration: interoperability 
• Cost of Ownership: money and effort 

 
These methods are similar to the QOS/QOI information 
fusion standard metrics such as timeliness, accuracy, 
confidence, throughput, and cost; with most of the efforts 
in JDM focusing on throughput and timeliness. It is hard 
to judge the quality of information stored; however, a user 
can input this information when the data is sent to be 
archived. Zahedi [35] uses QOI to establish an architecture 
for comparison of centralized versus distributed sensor 
network deployment planning. 
 
Data maintenance is akin to equipment maintenance.  In 
the case that equipment maintenance includes reliability, 
survivability, reparability, supportability, and other 
“ilities”; the same case can be made for data.  
(1) Reliability is that the data is available and timely.  

Much of the use of the data is based on the need for 
the data and information at the correct time. To ensure 
data reliability means that it has to be stored and 
accessed in such a way that it can be retrieved.  In 
addition, unlike equipment, the data can be stored as 
information and that information needs to be updated 
with new data.  For instance, an acoustic data can be 
exploited for a target and saved in a target folder.  
However, if later, it was determined from HUMINT 
reports that it was a benign target or incorrectly 
labeled, the data (acoustic) and information (target 
ID) should be updated for the new confidence (target 
ID) and timeliness (where the target is at a certain 
time).  Finally, the incorrect information needs to be 
removed from the target folder. 

(2) Survivability.  The data needs to be collected and 
correlated with the pedigree on the data collection and 
decision making processing.  To ensure that the data 
is available, it needs to “survive” in the data base 
from which it is correctly called when needed. Again, 
to maintain the survivability, means that it needs to be 
stored correctly.  Also, as more data is stored, older 
data can get lost as things scale. 

(3) Supportability: One question is: Does the current data 
need various updates for hardware changes? If we are 
conducting data management, that also prioritizes 
archival management over various hardware 
changes.  Likewise, software changes affect access 
to/from the data.  Many times, data is stored with 
protocols and header files to be access by application 
and presentation architecture layers.  When there is 
tight coupling between these layers and the data layer, 
access to the data may be affected. Maintaining 
compatibility software grand-fathering and other 
methods of ensuring backward compatibility are 
needed.  Furthermore, one can think of future or 
emergent compatibility needs.  Supportability could 
be maintained with standards and governance that are 

common (such as that for all the services) to support 
JDM and D2D. 

 
4 Example/Simulation 
In this example, we investigate the JDM problem for D2D 
by assuming a large number of sensors available to survey 
an area. We use the SENSIT data which was described 
above.  To perform the data management we use data 
mining [69] techniques such as a support vector machine 
(SVM) [70, 71] to process the unstructured data. Through 
analysis, we can determine the optimum use of the data 
given environmental conditions (i.e. obscurations) and 
sensor’s capabilities to detect a moving target. 

4.1 Data Processing 
To determine methods of Joint Data Management, we 
compare two cases of (1) processing the data separately 
and (2) jointly processing the acoustic and seismic results 
Figure 5 shows the case of the acoustic results. 

 
Figure 5. Acoustic Results. 

 
Figure 6 demonstrates the results for the seismic results. 
Note that for the data set, the seismic results have a lower 
probability of false alarms for target 3 and target 2; 
however, target 2 exhibits more confusion.  

 
Figure 6. Seismic Results. 

4.2 Joint Data Management 
Next we explore the case of the joint seismic and acoustic 
data management and utilize SVM for classification, 



shown in Figure 7. The key is there is a false alarm 
reduction which is desired by users. In general, the joint 
analysis supports better decision making as confidence 
was PD was improved for a constant false alarm rate, 
accuracy was improved as to the target location from joint 
spatial measurements, and timeliness in decision making 
as fewer measurements were needed to confirm the target 
ID (i.e. decision made with two modalities required fewer 
measurements than that of a single modality).  
 

 
Figure 7. Combined Results 

 

4.3 Data Management MOVINT Display 
Visual analytics provide methods to visualize the data and 
analysis. Since our goal is to not only provide a JDM 
approach, but also a D2D analysis for MOVINT 
capabilities. MOVINT is an intelligence gathering method 
by which images (IMINT), non-imaging products 
(MASINT), and signals (SIGINT) produce a movement 
history of objects of interest.  MOVINT provides both 
tactical and operational intelligence (situational 
awareness) of the dynamic environment.  For the 
operational analysis, we can provide a track presentation 
of the objects. For this data set, the truth information is 
available with the data history.  Here we present the 
classification information of the MOVINT results to 
demonstrate the salient features of the MOVINT system 
for analysis. Figure 8 presents a short history of the 
acoustic information and Figure 9 shows the case of the 
robust features for analysis. From these plots, a user can 
determine not only the location of the object, but the key 
aspects of the MOVINT target features for positive 
identification. 
 

 
 

Figure 8. Acoustic feature Analysis. 
 

 
 

Figure 9. Feature Discrimination Plot. 
 
We see that features 2-4 discriminate target 3, while 
features 5-7 discriminate target 2, and feature 8 and 12 are 
for target 1. 
 
5 Conclusions 
We have explored methods for Joint Data Management 
(JDM) for MOVINT data-to-decision making.  We utilize 
a support vector machine to process the unstructured 
classification data as well as the structured data of the 
target location. We showed that the JDM approach reduces 
the false alarms for enhanced and timely decision making.   
Next steps would be to investigate different classifiers, 
combination of classifiers and utilize optimum feature 
vectors so as to improve performance of the JDM 
pragmatic use of the data.  Information theoretic measures 
[72] and tracking analysis [73] can support the sensor and 
data management as well as determine the Quality of 
Information and Quality of Service needs. Use of the JDM 
for D2D provides decision support for situational 
awareness for command and control [74]. Various other 
sources of soft data (human reports) can be combined with 
the hard (physics-based sensing) [75] to update the sensor 
management, placement, and reporting of the situation 
based on the context and the needs of users to support 
JDM. JDM will require new methods in database 
management, information management, and measures of 
effectiveness for [76] mission support.   
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